讲座编号:jz-yjsb-2023-y009
讲座题目:基于患者特征信息的手术室调理鲁棒优化要领
主讲人:章宇
讲座时间:2023年5月26日 14:00
腾讯集会:850 229 101
加入工具:电商与物流学院全体教师、研究生
主办单位:电商与物流学院、研究生院
主讲人简介:
章宇,西南财经大学大数据研究院教授、博导。东北大学本科、直博,新加坡国立大学联合培养博士。曾赴新加坡国立大学任研究员,并多次受邀会见。主要从事物流、供应链、交通、医疗运营治理的鲁棒优化与决策研究。主持和加入国家自然科学基金项目3项。在Operations Research,Mathematical Programming,Production and Operations Management, INFORMS Journal on Computing等期刊宣布学术论文10余篇;裰泄卫砜蒲в牍こ萄Щ嵊判悴┦垦宦畚慕薄Omega期刊最佳论文奖,单篇论文入选ESI高被引论文。受邀担当Operations Research,INFORMS Journal on Computing,Transportation Science等期刊审稿人,任中国运筹学会决策科学分会理事。
主讲内容:
Patient features such as gender, age, and underlying disease are crucial to improving the model fidelity of surgery duration. In this paper, we study a robust surgery scheduling problem augmented by patient feature segmentation. We focus on the surgery-to-operating room allocations for elective patients and future emergencies. Using feature data, we classify patients into different types using machine learning methods and characterize the uncertain surgery duration via a feature-based cluster-wise ambiguity set. We propose a feature-driven adaptive robust optimization model that minimizes an overtime riskiness index, which helps mitigate both the magnitude and probability of working overtime. The model can be reformulated as a second-order conic programming problem. From the reformulation, we find that minimizing the overtime riskiness index is equivalent to minimizing a Fano factor. This makes our robust optimization model easily interpretable to healthcare practitioners. To efficiently solve the problem, we develop a branch-and-cut algorithm and introduce symmetry-breaking constraints. Numerical experiments demonstrate that our model outperforms benchmark models in a variety of performance metrics.